Identification of key peptidoglycan hydrolases for morphogenesis, autolysis, and peptidoglycan composition of Lactobacillus plantarum WCFS1

نویسندگان

  • Thomas Rolain
  • Elvis Bernard
  • Pascal Courtin
  • Peter A Bron
  • Michiel Kleerebezem
  • Marie-Pierre Chapot-Chartier
  • Pascal Hols
چکیده

BACKGROUND Lactobacillus plantarum is commonly used in industrial fermentation processes. Selected strains are also marketed as probiotics for their health beneficial effects. Although the functional role of peptidoglycan-degrading enzymes is increasingly documented to be important for a range of bacterial processes and host-microbe interactions, little is known about their functional roles in lactobacilli. This knowledge holds important potential for developing more robust strains resistant to autolysis under stress conditions as well as peptidoglycan engineering for a better understanding of the contribution of released muramyl-peptides as probiotic immunomodulators. RESULTS Here, we explored the functional role of the predicted peptidoglycan hydrolase (PGH) complement encoded in the genome of L. plantarum by systematic gene deletion. From twelve predicted PGH-encoding genes, nine could be individually inactivated and their corresponding mutant strains were characterized regarding their cell morphology, growth, and autolysis under various conditions. From this analysis, we identified two PGHs, the predicted N-acetylglucosaminidase Acm2 and NplC/P60 D,L-endopeptidase LytA, as key determinants in the morphology of L. plantarum. Acm2 was demonstrated to be required for the ultimate step of cell separation of daughter cells, whereas LytA appeared to be required for cell shape maintenance and cell-wall integrity. We also showed by autolysis experiments that both PGHs are involved in the global autolytic process with a dominant role for Acm2 in all tested conditions, identifying Acm2 as the major autolysin of L. plantarum WCFS1. In addition, Acm2 and the putative N-acetylmuramidase Lys2 were shown to play redundant roles in both cell separation and autolysis under stress conditions. Finally, the analysis of the peptidoglycan composition of Acm2- and LytA-deficient derivatives revealed their potential hydrolytic activities by the disappearance of specific cleavage products. CONCLUSION In this study, we showed that two PGHs of L. plantarum have a predominant physiological role in a range of growth conditions. We demonstrate that the N-acetylglucosaminidase Acm2 is the major autolysin whereas the D,L-endopeptidase LytA is a key morphogenic determinant. In addition, both PGHs have a direct impact on PG structure by generating a higher diversity of cleavage products that could be of importance for interaction with the innate immune system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

D-alanyl ester depletion of teichoic acids in Lactobacillus plantarum results in a major modification of lipoteichoic acid composition and cell wall perforations at the septum mediated by the Acm2 autolysin.

The insertional inactivation of the dlt operon from Lactobacillus plantarum NCIMB8826 had a strong impact on lipoteichoic acid (LTA) composition, resulting in a major reduction in D-alanyl ester content. Unexpectedly, mutant LTA showed high levels of glucosylation and were threefold longer than wild-type LTA. The dlt mutation resulted in a reduced growth rate and increased cell lysis during the...

متن کامل

Dual Role for the O-Acetyltransferase OatA in Peptidoglycan Modification and Control of Cell Septation in Lactobacillus plantarum

Until now, peptidoglycan O-acetyl transferases (Oat) were only described for their peptidoglycan O-acetylating activity and for their implication in the control of peptidoglycan hydrolases. In this study, we show that a Lactobacillus plantarum mutant lacking OatA is unable to uncouple cell elongation and septation. Wild-type cells showed an elongation arrest during septation while oatA mutant c...

متن کامل

Modulation of Lactobacillus plantarum Gastrointestinal Robustness by Fermentation Conditions Enables Identification of Bacterial Robustness Markers

BACKGROUND Lactic acid bacteria (LAB) are applied worldwide in the production of a variety of fermented food products. Additionally, specific Lactobacillus species are nowadays recognized for their health-promoting effects on the consumer. To optimally exert such beneficial effects, it is considered of great importance that these probiotic bacteria reach their target sites in the gut alive. M...

متن کامل

Bacterial peptidoglycan (murein) hydrolases.

Most bacteria have multiple peptidoglycan hydrolases capable of cleaving covalent bonds in peptidoglycan sacculi or its fragments. An overview of the different classes of peptidoglycan hydrolases and their cleavage sites is provided. The physiological functions of these enzymes include the regulation of cell wall growth, the turnover of peptidoglycan during growth, the separation of daughter ce...

متن کامل

Identification of the amidotransferase AsnB1 as being responsible for meso-diaminopimelic acid amidation in Lactobacillus plantarum peptidoglycan.

The peptidoglycan (PG) of Lactobacillus plantarum contains amidated meso-diaminopimelic acid (mDAP). The functional role of this PG modification has never been characterized in any bacterial species, except for its impact on PG recognition by receptors of the innate immune system. In silico analysis of loci carrying PG biosynthesis genes in the L. plantarum genome revealed the colocalization of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2012